LTR	DESCRIPTION	DATE	APPROVED

REV																			
PAGE																			
REV																			
PAGE																			
REV STATUS OF PAGES	REV																		
	PAGE		1	2	3	4	5	6	7	8		9	10	11	12	13	14	15	
PMIC N/A PREPARED BY Phu H. Nguyen									DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 http://www.dscc.dla.mil										
Original date of drawing YY MM DD 12-04-09		APPROVED BY Thomas M. Hess							TITLE MICROCIRCUIT, DIGITAL, 1024-POSITION, DIGITAL POTENTIOMETER WITH MAXIMUM $\pm 1 \%$ R-TOLERANCE ERROR AND 20-TP MEMORY, MONOLITHIC SILICON										
		$\begin{gathered} \text { SIZE } \\ \text { A } \end{gathered}$		E IDE					DWG NO.										
		REV							PAGE 1 OF 15										

1. SCOPE
1.1 Scope. This drawing documents the general requirements of a high performance 1024-position, digital potential meter with maximum $\pm 1 \%$ R-tolerance error and 20 -TP memory microcircuit, with an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
1.2 Vendor Item Drawing Administrative Control Number. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

1.2.1 Device type(s).

Device type
01

Generic
AD5292-EP

Circuit function

1024-position, digital potential meter with maximum $\pm 1 \%$ R-tolerance error and 20-TP memory
1.2.2 Case outline(s). The case outlines are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
	14	JEDEC MO-153-AB	Lead thin Shrink Small Outline Package

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator

A	Hot solder dip
B	Tin-lead plate
C	Gold plate
D	Palladium
E	Gold flash palladium
Z	Other

1.3 Absolute maximum ratings. 1/

$V_{D D}$ to GND	-0.3 V to +35 V
$V_{\text {ss }}$ to GND	+0.3V to -25V
$V_{\text {Logic }}$ to GND	-0.3 V to +7 V
$V_{\text {DD }}$ to $\mathrm{V}_{S S}$	35 V
$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$ to GND	$\mathrm{V}_{S S}-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital input and output voltage to GND	-0.3 V to $\mathrm{V}_{\text {Logic }}+0.3 \mathrm{~V}$
EXT_CAP voltage to GND	-0.3 V to +7 V
IA, IB, IW	
Continuous	$\pm 3 \mathrm{~mA}$
Pulsed 2/	
Frequency > 10 kHz	$\pm 3 / \mathrm{d} \quad 3 /$
Frequency $\leq 10 \mathrm{kHz}$	$\pm 3 / \sqrt{ } \mathrm{d}$ 3/
Operating temperature range 4/	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature Range ($\mathrm{T}_{\mathrm{J}} \mathrm{max}$)	$150^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Reflow soldering	
Peak temperature	$260^{\circ} \mathrm{C}$
Time at peak temperature	20 sec to 40 sec
Package power dissipation	$\left(\mathrm{T}_{J} \max -\mathrm{T}_{\mathrm{A}}\right.$)/ θ_{JA}
Thermal resistance	

Case outline	θ_{JA}	θ_{JA}	Unit
Case X	$93 \underline{\underline{5} /}$	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)
JEP95 - Registered and Standard Outlines for Semiconductor Devices
JESD51-7 - High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
(Copies of these documents are available online at http:/www.jedec.org or from JEDEC - Solid State Technology Association, 3103 North 10th Street, Suite 240-S, Arlington, VA 22201.)

[^0]| DLA LAND AND MARITIME
 COLUMBUS, OHIO | SIZE
 A | CODE IDENT NO.
 16236 | DWG NO.
 V62/12616 |
| :---: | :---: | :---: | :---: |
| | | REV | PAGE 3 |

3. REQUIREMENTS

3.1 Marking. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
A. Manufacturer's name, CAGE code, or logo
B. Pin 1 identifier
C. ESDS identification (optional)
3.2 Unit container. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
3.3 Electrical characteristics. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
3.5 Diagrams.
3.5.1 Case outline. The case outline shall be as shown in 1.2.2 and figure 1.
3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.
3.5.3 Terminal function. The terminal function shall be as shown in figure 3.
3.5.4 Functional block diagram. The functional block diagram shall be as shown in figure 4.
3.5.5 Shift register content. The shift register content shall be as shown in figure 5.
3.5.6 Write timing diagram. The write timing diagram shall be as shown in figure 6 .
3.5.7 Read timing diagram. The read timing diagram shall be as shown in figure 7 .
3.5.8 Resistor position nonlinearity error. The resistor position nonlinearity error shall be as shown in figure 8.
3.5.9 Potentiometer divider nonlinearity error. The potentiometer divider nonlinearity error shall be as shown in figure 9.
3.5.10 Wiper resistance. The wiper resistance shall be as shown in figure 10.
3.5.11 Power supply sensitivity. The power supply sensitivity shall be as shown in figure 11.
3.5.12 Gain vs frequency. The gain vs frequency shall be as shown in figure 12.
3.5.13 Common mode leakage current. The common mode leakage current shall be as shown in figure 13.

DLA LAND AND MARITIME cOLUMBUS, OHIO	SIZE A	CODE IDENT NO. $\mathbf{1 6 2 3 6}$	DWG NO. V62/12616
		REV	PAGE 4

TABLE I. Electrical performance characteristics. 1/

Test	Symbol	Conditions 2/	Limits		Unit
			Min	Max	
DC characteristics - Rheostat mode					
Resolution	N		10		Bits
Resistor differential nonlinearity 4/	R-DNL	$\mathrm{R}_{\mathrm{WB}}, \mathrm{V}_{\mathrm{A}}=\mathrm{NC}$	-1	+1	LSB
Resistor integral nonlinearity 4/	R-INL	$\begin{aligned} & \mathrm{R}_{\mathrm{AB}}=20 \mathrm{k} \Omega,\left\|\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right\|=26 \mathrm{~V} \text { to } 33 \\ & \mathrm{~V} \end{aligned}$	-2	+2	
		$\mathrm{R}_{\mathrm{AB}}=20 \mathrm{k} \Omega,\left\|\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{Ss}}\right\|=26 \mathrm{~V}$ to 33 V	-3	+3	
Nominal resistor tolerance (R-Perf mode) 5/	$\Delta \mathrm{R}_{\mathrm{AB}} / \mathrm{R}_{\mathrm{AB}}$	71	-1	+1	\%
Nominal resistor tolerance (Normal mode) 6/	$\Delta \mathrm{R}_{\mathrm{AB}} / \mathrm{R}_{\text {AB }}$		± 7 TYP ${ }^{3 /}$		
Resistance temperature coefficient	$\left(\Delta \mathrm{R}_{\mathrm{AB}} / \mathrm{R}_{\mathrm{AB}}\right) \Delta \mathrm{T} \times 10^{6}$		35 TYP 3/		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Wiper resistance	R_{w}			100	Ω
DC characteristics - Potentiometer divider mode					
Resolution	N		10		Bits
Differential nonlinearity 8/	DNL		-1	+1	LSB
Integral nonlinearity $\underline{8 /}$	INL		-2.5	+2.5	
Voltage divider temperature coefficient $\underline{6 /}$	$\left(\Delta \mathrm{V}_{\mathrm{W}} / \mathrm{V}_{\mathrm{W}}\right) \Delta \mathrm{T} \times 10^{6}$	Code = half scale;	5 TYP 3/		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Full scale error	$\mathrm{V}_{\text {WFSE }}$	Code = full scale	-8	+1	LSB
Zero scale error	$V_{\text {WZSE }}$	Code = zero scale	0	10	
Resistor terminals					
Terminal voltage range $\underline{\text { / }}$	$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$		$\mathrm{V}_{\text {SS }}$	$V_{D D}$	V
Capacitance A, Capacitance B 6/	$\mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{B}}$	$\mathrm{f}=1 \mathrm{MHz}$, measured to GND, code $=$ half scale	85 TYP 3/		pF
Capacitance W 6/	C_{w}		65 TYP 3/		
Common mode leakage current 6/	$\mathrm{I}_{\text {cm }}$	$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{W}}$	-120	+120	nA
Digital inputs					
Input logic high 6/	V_{IH}	$\mathrm{V}_{\text {LOGIC }}=2.7 \mathrm{~V}$ to 5.5 V	2.0		V
Input logic low 6/	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {LOGIC }}=2.7 \mathrm{~V}$ to 5.5 V		0.8	
Input current	ILL	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {Logic }}$		± 1	$\mu \mathrm{A}$
Input capacitance 6/	$\mathrm{Cl}_{\text {IL }}$		5 TYP 3/		pF

See footnote at end of table.

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	$\begin{gathered} \hline \text { Conditions } \\ \underline{2} / \\ \hline \end{gathered}$	Limits		Unit
			Min	Max	
Digital output (SDO and RDY)					
Output high voltage 6/	V_{OH}	$\mathrm{R}_{\text {PULL_UP }}=2.2 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {LOGIC }}$	$V_{\text {LOGIC }}-0.4$		V
Output low voltage 6/	VoL			GND + 0.4	
Three state leakage current			-1	+1	$\mu \mathrm{A}$
Output capacitance 6/	CoL		5 TY		pF
Power supplies					
Single supply power range	$V_{D D}$	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	9	33	V
Dual supply power range	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$		± 9	± 16.5	V
Positive supply current	I_{DD}	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}= \pm 16.5 \mathrm{~V}$		2	$\mu \mathrm{A}$
Negative supply current	Iss	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}= \pm 16.5 \mathrm{~V}$	-2		$\mu \mathrm{A}$
Logic supply range	VLogic		2.7	5.5	V
Logic supply current	ILOGIC	$\mathrm{V}_{\text {LOGIC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=5 \mathrm{~V}$ or $\mathrm{V}_{\text {IL }}=\mathrm{GND}$		10	$\mu \mathrm{A}$
OTP store current 6/ 10/	ILOGC_PROG	$\mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$	25 TYP 3/		mA
OTP read current 6/ 11/	ILogic_fuse_read	$\mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$	25 TYP 3/		mA
Power dissipation 12/	P ${ }_{\text {DISS }}$	$\mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$		110	$\mu \mathrm{W}$
Power supply rejection ratio	PSSR	$\Delta \mathrm{V}_{\mathrm{DD}} / \Delta \mathrm{V}_{\text {SS }}= \pm 15 \mathrm{~V} \pm 10 \%$	0.103 TYP 3/		\%/\%
Dynamic characteristics 8/ 13/					
Bandwidth	BW	-3 dB	520 TYP 3/		
Total harmonic distortion	THD ${ }_{\text {w }}$	$\mathrm{V}_{\mathrm{A}}=1 \mathrm{Vrms}, \mathrm{V}_{\mathrm{B}}=0, \mathrm{f}=1 \mathrm{kHz}$	-93 TYP 3/		
V_{w} setting time	ts	$\mathrm{VA}=30 \mathrm{~V}, \mathrm{VB}=0 \mathrm{~V}, \pm 0.5 \mathrm{LSB}$ error band, initial code $=$ zero scale, board capacitance $=170 \mathrm{pF}$ Code = full scale, normal mode Code $=$ full scale, R-perf mode Code = half scale, normal mode Code = half scale, R-Perf mode	$\begin{gathered} 750 \text { TYP } \underline{3} / \\ 2.5 \text { TYP } \underline{3} / \\ 2.5 \text { TYP } \underline{3} / \\ 5 \text { TYP } \underline{3} / \\ \hline \end{gathered}$		ns $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$
Resistor noise density	$\mathrm{e}_{\mathrm{N} \text { ¢ } \mathrm{wb}}$	Code = half scale	10 TYP 3/		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12616
		REV	PAGE 6

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions$\underline{\underline{14 /}}$	Limits 15/		Unit
			Min	Max	
Interface timing specifications					
SCLK cycle time	t_{1} 16/		20		ns
SCLK high time	t2		10		
SCLK low time	t3		10		
$\overline{\text { SYNC }}$ to SCLK falling edge setup time	t4		10		
Data setup time	t5		5		
Data hold timw	t6		5		
SCLK falling edge to $\overline{\text { SYNC }}$ rising edge	t7		1		
Minimum $\overline{\text { SYNC }}$ high time	t8		400 171		
	t9		14		
RDY rising edge to $\overline{\text { SYNC }}$ falling edge	t_{10} 18/		1		
$\overline{\text { SYNC rising edge to RDY fall time }}$	t_{11} 18/			40	
RDY low time, RDAC register write command execute time (R-Perf mode)	t_{12} 18/			2.4	$\mu \mathrm{s}$
RDY low time, RDAC register write command execute time (normal mode)				419	ns
RDY low time, memory program execute time				8	ms
Software/hardware reset			1.5		ms
RDY low time, RDAC register readback execute time	t_{13} 18/			450	ns
RDY low time, memory readback execute time				1.3	ms
SCLK rising edge to SDO valid	t_{14} 18/			450	ns
Minimum $\overline{\text { RESET }}$ pulse width (asynchronous)	treset		20		ns
Power on OTP restore time	$\begin{gathered} \text { tPOWER-UP }^{19 /} \\ \hline \end{gathered}$			2 ms	

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12616
		REV	PAGE

TABLE I. Electrical performance characteristics - Continued. 1/

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
2/ $\quad \mathrm{V}_{\mathrm{DD}}=21 \mathrm{~V}$ to $33 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{DD}}=10.5 \mathrm{~V}$ to $16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-10.5 \mathrm{~V}$ to -16.5 V ; $\mathrm{V}_{\mathrm{LOGIC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{SS}}$, $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$, unless otherwise noted.
3/ Typical values represent average readings at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$, vss $=-15 \mathrm{~V}$, and $\mathrm{V}_{\text {LOGIC }}=5 \mathrm{~V}$.
4/ Resistor position nonlinearity error. R-INL is the deviation from an ideal value measured between $R_{W B}$ at code 0x00B and code $0 \times 3 F F$ or between R ${ }_{\text {WA }}$ at code $0 \times 3 F 3$ and code 0×000. R-DNL measures the relative step change from ideal between successive tap positions. The specification is guaranteed in resistor performance mode, with a wiper current of 1 mA for $\mathrm{VA}<12 \mathrm{~V}$ and 1.2 mA for $\mathrm{VA} \geq 12 \mathrm{~V}$.
5/ Resistor performance mode. The terms resistor performance mode and R-Perf mode are used interchangeably.
6/ Guaranteed by design and characterization, not subject to production test.
7/ Resistor performance mode code range

Resistor Tolerance per Code	$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$							
	$\left\|\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right\|=30 \mathrm{~V}$ to 33V		$\left\|\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\right\|=26 \mathrm{~V}$ to 30V		$\left\|\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right\|=22 \mathrm{~V}$ to 26 V		$\left\|\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}\right\|=21 \mathrm{~V}$ to 22 V	
	R_{WB}	$\mathrm{R}_{\text {Wa }}$	$\mathrm{R}_{\text {WB }}$	RWA	$\mathrm{R}_{\text {WB }}$	$\mathrm{R}_{\text {Wa }}$	$\mathrm{R}_{\text {WB }}$	$\mathrm{R}_{\text {WA }}$
1\% R-Tolerance	$\begin{gathered} \text { From } 0 \times 1 \mathrm{EF} \\ \text { to } 0 \times 3 \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { From } 0 \times 000 \\ \text { to } 0 \times 210 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { From } 0 \times 1 F 4 \\ \text { to } 0 \times 3 F F \\ \hline \end{array}$	$\begin{gathered} \text { From } 0 \times 000 \\ \text { to } 0 \times 20 B \end{gathered}$	$\begin{array}{\|l\|} \hline \text { From } 0 \times 1 \mathrm{~F} 4 \\ \text { to } 0 \times 3 F F \end{array}$	$\begin{gathered} \text { From } 0 \times 000 \\ \text { to } 0 \times 20 \mathrm{~B} \end{gathered}$	N/A	N/A
2\% R-Tolerance	$\begin{gathered} \text { From } 0 \times 0 \mathrm{C} 3 \\ \text { to } 0 \times 3 \mathrm{FF} \\ \hline \end{gathered}$	$\begin{gathered} \text { From } 0 \times 000 \\ \text { to } 0 \times 33 \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \text { From 0x0E6 } \\ \text { to } 0 \times 3 F F \\ \hline \end{gathered}$	$\begin{gathered} \text { From } 0 \times 000 \\ \text { to } 0 \times 319 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { From } 0 \times 131 \\ \text { to } 0 \times 3 F F \\ \hline \end{array}$	$\begin{aligned} & \text { From } 0 \times 000 \\ & \text { to } 0 \times 2 \mathrm{CE} \\ & \hline \end{aligned}$	$\begin{gathered} \text { From } 0 \times 131 \\ \text { to } 0 \times 3 F F \\ \hline \end{gathered}$	$\begin{aligned} & \text { From } 0 \times 000 \\ & \text { to } 0 \times 2 \mathrm{CE} \\ & \hline \end{aligned}$
3\% R-Tolerance	$\begin{gathered} \text { From } 0 \times 073 \\ \text { to } 0 \times 3 F F \end{gathered}$	$\begin{gathered} \text { From } 0 \times 000 \\ \text { to } 0 \times 38 \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \text { From } 0 \times 087 \\ \text { to } 0 \times 3 F F \\ \hline \end{gathered}$	$\begin{gathered} \text { From } 0 \times 000 \\ \text { to } 0 \times 378 \\ \hline \end{gathered}$	$\begin{aligned} & \text { From } 0 \times 0 \mathrm{AF} \\ & \text { to } 0 \times 3 \mathrm{FF} \\ & \hline \end{aligned}$	$\begin{gathered} \text { From } 0 \times 000 \\ \text { to } 0 \times 350 \\ \hline \end{gathered}$	$\begin{gathered} \text { From } 0 \times 0 \mathrm{AF} \\ \text { to } 0 \times 3 \mathrm{FF} \\ \hline \end{gathered}$	$\begin{gathered} \text { From } 0 \times 000 \\ \text { to } 0 \times 350 \\ \hline \end{gathered}$

8/ INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output $D A C . V_{A}=V_{D D}$ and $V_{B}=0 \mathrm{~V}$. DNL specification limits of ± 1 LSB maximum guaranteed monotonic operating conditions.
9/ Resistor terminal A, Resistor terminal B, and Resistor terminal W, have no limitations on polarity with respect to each other. Dual supply operation enables ground referenced bipolar signal adjustment.
10/Different from operating current; supply current for fuse program lasts approximately $550 \mu \mathrm{~s}$.
11/ Different from operating current; supply current for fuse read lasts approximately $550 \mu \mathrm{~s}$.
12/ $P_{\text {DISs }}$ is calculated from ($\left.I_{D D} \times V_{D D}\right)+\left(I_{\text {LOGIC }} \times V_{\text {LOGIC }}\right)$.
13/ All dynamic characteristics use $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$, and $\mathrm{V}_{\text {LOGIC }}=5 \mathrm{~V}$.
$14 / \mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}= \pm 15 \mathrm{~V}$, VLOGIC $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V},-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$. All specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
15/ All input signal are specified with $t_{R}=t_{F}=1 \mathrm{~ns} / \mathrm{V}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
16/ Maximum SCLK frequency is 50 MHz .
17/ Refer to t12 and t13 for RDAC register and memory commands operations.
18/ $R_{\text {PULL-UP }}=2.2 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {LOGIC }}$, with a capacitance load of 186 pF .
19/ Maximum time after $\mathrm{V}_{\text {LoGic }}$ is equal to 2.5 V .

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO.
V62/12616			
		REV	PAGE 8

DETAIL A

Dimensions					
Symbol	Millimeters		Symbol	Millimeters	
	Min	Max		Min	Max
A		1.20	E	4.30	4.50
A1	0.05	0.15	E1		SC
b	0.19	0.30	e		SC
c	0.09	0.20	L	0.45	0.75
D	4.90	5.10			

NOTES:

1. All linear dimensions are in millimeters.
2. Falls within JEDEC MO-153-AB-1.

FIGURE 1. Case outline.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12616
		REV	PAGE 9

Case outline X			
Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	$\overline{\text { RESET }}$	8	V LoGIC
2	V $_{\text {SS }}$	9	GND
3	A	10	DIN
4	W	11	SCLK
5	B	12	$\overline{\text { SYNC }}$
6	V $_{\text {DD }}$	13	SDO
7	EXT_CAP	14	RDY

FIGURE 2. Terminal connections.

Case outline X		
Terminal		Description
Number	Mnemonic	
1	$\overline{\text { RESET }}$	Hardware reset pin. Refreshes the RDAC register with the contents of the 20-TP memory register. Factory default loads midscale until the first 20-TP wiper memory location programmed. $\overline{\text { RESET }}$ is activated at the logic high transition. Tie $\overline{\text { RESET }}$ to $\mathrm{V}_{\text {Logic }}$ if not used.
2	$\mathrm{V}_{\text {ss }}$	Negative supply. Connect to 0 V for single supply applications. This pin should be decoupled with $0.1 \mu \mathrm{~F}$ ceramic capacitors and $10 \mu \mathrm{~F}$ capacitors.
3	A	Terminal A of RDAC. $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\mathrm{A}} \leq \mathrm{V}_{\text {DD }}$.
4	W	Wiper terminal of RDAC. $\mathrm{V}_{S S} \leq \mathrm{V}_{\mathrm{W}} \leq \mathrm{V}_{\mathrm{DD}}$.
5	B	Terminal B of RDAC. $\mathrm{V}_{S S} \leq \mathrm{V}_{B} \leq \mathrm{V}_{\mathrm{DD}}$.
6	$V_{D D}$	Positive power supply. This pin should be decoupled with $0.1 \mu \mathrm{~F}$ ceramic capacitors and $10 \mu \mathrm{~F}$ capacitors.
7	EXT_CAP	External Capacitor. Connect a $1 \mu \mathrm{~F}$ capacitor to EXT_CAP. This capacitor must have a voltage rating of $\geq 7 \mathrm{~V}$.
8	$V_{\text {LoGic }}$	Logic power supply; 2.7 V to 5.5 V . This pin should be decoupled with $0.1 \mu \mathrm{~F}$ ceramic capacitors and $10 \mu \mathrm{~F}$ capacitors.
9	GND	Ground pin, Logic ground reference.
10	DIN	Serial data input. The AD5292-EP has a 16 bit shift register. Data is clocked into register on the falling edge of the serial clock input.
11	SCLK	Serial clock input. data is clocked into the shift register on the falling edge of the serial clock input. Data can be transferred at rates up to 50 MHz .
12	$\overline{\text { SYNC }}$	Falling edge synchronization signal. This is the fram synchronization signal for the input data. When $\overline{\text { SYNC }}$ goes low, it enables the shift register and data is transferred in on the falling edges of the following clocks. The selected register is updated on the rising edge of $\overline{\text { SYNC }}$ following the $16^{\text {th }}$ clock cycle. If $\overline{\text { SYNC }}$ is taken high before $16^{\text {th }}$ clock cycle, the rising edge of $\overline{\text { SYNC }}$ acts as an interrupt, and the write sequence is ignored by the DAC.
13	SDO	Serial data output. This open drain output requires an external pull up resistor. SDO can be used to clock data from the shift register in daisy chain mode or in readback mode.
14	RDY	Ready Pin. This active high open drain output identifies the completion of a write or read operation to or from the RDAC register or memory.

FIGURE 3. Terminal function.

FIGURE 4. Functional block diagram.

FIGURE 5. Shift register content.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12616
		REV	PAGE 11

FIGURE 6. Write timing diagram, $\mathrm{CPOL}=0, \mathrm{CPHA}=1$.

FIGURE 7. Read timing diagram, $\mathrm{CPOL}=0, \mathrm{CPHA}=1$.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12616
		REV	PAGE 12

NC=NO CONNECT

FIGURE 8. Resistor position nonlinearity error (Rheostat operation; R-INL, R-DNL).

FIGURE 9. Potentiometer divider Nonlinearity error (INL, DNL).

FIGURE 10. Wiper resistance.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12616
		REV	PAGE 13

$V+=V_{D D} \pm 10 \%$
$\operatorname{PSRR}(d B)=20 \log \frac{\Delta V_{M S}}{\Delta V_{D D}}$
$\operatorname{PSS}(\% \%)=\frac{\Delta \mathrm{V}_{\mathrm{MS}}{ }^{\%}}{\Delta \mathrm{~V}_{\mathrm{DD}}{ }^{\text {\% }}}$

FIGURE 11. Power supply sensitive (PSS, PSRR).

FIGURE 12. Gain vs Frequency.

FIGURE 13. Common mode leakage current

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12616
		REV	PAGE 14

4. VERIFICATION

4.1 Product assurance requirements. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 Packaging. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.
6. NOTES
6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
6.2 Configuration control. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
6.3 Suggested source(s) of supply. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item.

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Vendor part number
V62/12616-01XB	24355	AD5292SRU-20-EP

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

24355

Source of supply
Analog Devices
1 Technology Way
P.O. Box 9106

Norwood, MA 02062-9106

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. $\mathbf{1 6 2 3 6}$	DWG NO. V62/12616
		REV	PAGE 15

[^0]: 1/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
 2/ Maximum terminal current is bounded by the maximum current handling of the switches, maximum poser dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.
 3/ Pulse duty factor.
 4/ Includes programming of OTP memory.
 5/ JEDEC 2S2P test board, still air ($0 \mathrm{~m} / \mathrm{sec}$ to $1 \mathrm{~m} / \mathrm{sec}$ air flow).

