													REVIS	SIONS								
					LT	R				DESC	RIPTI	ON				D	ATE		ļ	PPRO	OVED)
Prepared	l in acc	cordan	nce wit	h ASMI	E Y14	4.24												Ve	ndor it	em dra	awing	I
Prepared	l in acc	cordan	nce wit	h ASMI	E Y14	4.24												Ve	ndor it	em dra	awing	1
Prepared REV	l in acc	cordan	nce wit	h ASMI	E Y14	4.24												Ve	ndor it	em dra	awing	
	l in acc	cordan	nce wit	h ASMI	E Y14	4.24												Ve	ndor it	em dra	awing	
REV	l in acc	cordan	nce wit	h ASMI	E Y14	4.24												Ve	ndor it	em dra	awing	
REV PAGE	l in acc			h ASMI	E Y14	4.24												Ve	ndor it	em dra	awing	
REV PAGE REV PAGE REV STA	ATUS	cordan	REV		E Y14	4.24												Ve	ndor it	em dra	awing	
REV PAGE REV PAGE	ATUS	cordan			E Y14	4.24	2	3	4	5	6	7	8	9	10	11	12	Ve	ndor it	em dra	awing	
REV PAGE REV PAGE REV STA	ATUS	cordan	REV			1 20 BY	,			5	6	7	8	-	DLA		AND	13 MARI	14 TIME	15	awing	
REV PAGE REV PAGE REV STA OF PAGE	ATUS		REV	jE		1 20 BY	,	3 Nguy		5	6	7	8	-) AND , OHIC	13 MARI 0 432'	14 TIME 18-399	15	awing	
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A	f drawi	REV	jE	PARE	1 :D BY	Phu H.	Nguy	en	5	6	7		-		LAND //BUS) AND , OHIC	13 MARI 0 432'	14 TIME 18-399	15	awing	
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y MM	f drawi DD	REV	E PREF CHEC	PARE	1 50 BY F 0 BY	Phu H. Phu H.		en	5	6	TIT MIC	LE	c	DLA OLUN <u>htt</u>	LAND MBUS p://ww	AND , OHIC /w.dso	13 MARI 0 432 c.dla	14 18-399 	15 00	N,	
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A	f drawi DD	REV	E	PARE	1 50 BY F 50 BY	Phu H. Phu H.	Nguy Nguy	en en	5	6	TIT MIC	LE CROC		DLA OLUN <u>htt</u> JIT, [LAND MBUS p://ww DIGIT	AND , OHIC <u>/w.dso</u> /AL, ETER	13 MARI 0 432 cc.dla 1024	14 14 17IME 18-399 .mil	15 00	N, UM :	±1%
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y MM	f drawi DD	REV	E PREF CHEC	PARE	1 50 BY F 50 BY	Phu H. Phu H.	Nguy	en en	5	6	TIT MIC DIG R-T	LE	C C IRCU POT RANG	JIT, I ENT	LAND JBUS p://ww DIGIT TOME RRO	AND , OHIC (w.dso (w.dso (k.dso (k.dso) (k.dso	13 MARI 0 432 cc.dla 1024	14 14 17IME 18-399 .mil	15 00	N, UM :	±1%
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y MM	f drawi DD	REV	E PREF CHEC	PARE	1 ED BY F ED BY Th	Phu H. Phu H.	Nguy Nguy	en en ess	5	6	TIT MIC DIG R-T MO		C C C C C C C C C C C C C C C C C C C	JIT, I ENT	LAND JBUS p://ww DIGIT TOME RRO	AND , OHIC (w.dso (w.dso (k.dso (k.dso) (k.dso	13 MARI 0 432 cc.dla 1024	14 14 17IME 18-399 .mil	15 00	N, UM :	±1%
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y MM	f drawi DD	REV	E PREF CHEC	PARE	1 ED BY F ED BY Th	Phu H. Phu H.	Nguy Nguy S M. He	en en ess	5	6	TIT MIC DIG R-T MO	LE CROC GITAL OLEI	C C C C C C C C C C C C C C C C C C C	JIT, I ENT CE E SIL	LAND MBUS p://ww DIGIT TOME RRO ICON	AND , OHIC <u>w.dsc</u> AL, ETER R AN	13 MARI 0 432 c.dla 1024 WIT D 20	14 TIME 18-399 	15 00	N, UM :	±1%
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y MM	f drawi DD	REV	E PREF CHEC APPF	PARE	1 ED BY F ED BY Th	Phu H. Phu H.	Nguy Nguy S M. He	en en ess	5	6	TIT MIC DIG R-T MO DWG	LE CROC GITAL OLEI	C C C C C C C C C C C C C C C C C C C	JIT, I ENT CE E SIL	LAND MBUS p://ww DIGIT TOME RRO	AND , OHIC <u>w.dsc</u> AL, ETER R AN	13 MARI 0 432 c.dla 1024 WIT D 20	14 TIME 18-399 	15 00	N, UM :	±1%

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance 1024-position, digital potential meter with maximum $\pm 1\%$ R-tolerance error and 20-TP memory microcircuit, with an operating temperature range of -55°C to +125°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

V62/12616 Drawing number 1.2.1 Device type(s).	- <u>01</u> Device type (See 1.2.1)	Case outline (See 1.2.2)	Lead finish (See 1.2.3)
Device type	Generic	<u>Ci</u>	rcuit function
01	AD5292-EP		, digital potential meter with % R-tolerance error and 20-TP memory

1.2.2 <u>Case outline(s)</u>. The case outlines are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
х	14	JEDEC MO-153-AB	Lead thin Shrink Small Outline Package

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	Material
A B C D E Z	Hot solder dip Tin-lead plate Gold plate Palladium Gold flash palladium Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12616	
COLUMBUS, OHIO	A	16236		
		REV	PAGE 2	

1.3 Absolute maximum ratings. 1/

V _{DD} to GND	+0.3 V to -25 V -0.3 V to +7 V 35 V
Digital input and output voltage to GND	-0.3 V to V _{LOGIC} + 0.3 V
EXT_CAP voltage to GND	-0.3 V to +7 V
IA, IB, IW	
Continuous	±3 mA
Pulsed <u>2</u> /	
Frequency > 10 kHz	
Frequency ≤ 10 kHz	±3/√d <u>3</u> /
Operating temperature range <u>4</u> /	-55°C to +125°C
Maximum Junction Temperature Range (T _J max)	150°C
Storage temperature range	-65°C to 150°C
Reflow soldering	
Peak temperature	260°C
Time at peak temperature	
Package power dissipation	
Thermal resistance	

Case outline	θ_{JA}	θ_{JA}	Unit
Case X	93 <u>5</u> /	20	°C/W

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

- JEP95 Registered and Standard Outlines for Semiconductor Devices
- JESD51-7 High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages

(Copies of these documents are available online at http://www.jedec.org or from JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240–S, Arlington, VA 22201.)

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12616
COLUMBUS, OHIO	A	16236	
		REV	PAGE 3

<u>1</u>/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

^{2/} Maximum terminal current is bounded by the maximum current handling of the switches, maximum poser dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.

^{3/} Pulse duty factor.

 $[\]overline{\underline{4}}$ / Includes programming of OTP memory.

^{5/} JEDEC 2S2P test board, still air (0 m/sec to 1 m/sec air flow).

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.

3.5 Diagrams.

- 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
- 3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.
- 3.5.3 <u>Terminal function</u>. The terminal function shall be as shown in figure 3.
- 3.5.4 <u>Functional block diagram</u>. The functional block diagram shall be as shown in figure 4.
- 3.5.5 <u>Shift register content</u>. The shift register content shall be as shown in figure 5.
- 3.5.6 <u>Write timing diagram</u>. The write timing diagram shall be as shown in figure 6.
- 3.5.7 <u>Read timing diagram</u>. The read timing diagram shall be as shown in figure 7.
- 3.5.8 <u>Resistor position nonlinearity error</u>. The resistor position nonlinearity error shall be as shown in figure 8.
- 3.5.9 <u>Potentiometer divider nonlinearity error</u>. The potentiometer divider nonlinearity error shall be as shown in figure 9.
- 3.5.10 <u>Wiper resistance</u>. The wiper resistance shall be as shown in figure 10.
- 3.5.11 <u>Power supply sensitivity</u>. The power supply sensitivity shall be as shown in figure 11.
- 3.5.12 <u>Gain vs frequency</u>. The gain vs frequency shall be as shown in figure 12.
- 3.5.13 <u>Common mode leakage current</u>. The common mode leakage current shall be as shown in figure 13.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12616
COLUMBUS, OHIO	A	16236	
		REV	PAGE 4

TABLE I. Electrical performance characteristics. 1/

Test	Symbol	Conditions	Limits		Unit
		<u>2</u> /	Min	Max	
DC characteristics – Rheostat mode					
Resolution	N		10		Bits
Resistor differential nonlinearity 4/	R-DNL	R _{WB} , V _A = NC	-1	+1	LSB
Resistor integral nonlinearity <u>4</u> /	R-INL	R_{AB} = 20 kΩ, $ V_{DD}-V_{SS} $ = 26 V to 33 V	-2	+2	
		R_{AB} = 20 k Ω , $ V_{DD} - V_{SS} $ = 26 V to 33 V	-3	+3	
Nominal resistor tolerance (R-Perf mode) 5/	$\Delta R_{AB}/R_{AB}$	<u>7</u> /	-1	+1	%
Nominal resistor tolerance (Normal mode) 6/	$\Delta R_{AB}/R_{AB}$		±7 TY	'P <u>3</u> /	
Resistance temperature coefficient	$(\Delta R_{AB}/R_{AB})\Delta T \times 10^6$		35 TY	'P <u>3</u> /	ppm/°C
Wiper resistance	Rw			100	Ω
DC characteristics – Potentiometer divider	mode				
Resolution	N		10		Bits
Differential nonlinearity <u>8</u> /	DNL		-1	+1	LSB
Integral nonlinearity <u>8</u> /	INL		-2.5	+2.5	
Voltage divider temperature coefficient 6/	$(\Delta V_W/V_W)\Delta T \times 10^6$	Code = half scale;	5 TY	P <u>3</u> /	ppm/°C
Full scale error	V _{WFSE}	Code = full scale	-8	+1	LSB
Zero scale error	V _{WZSE}	Code = zero scale	0	10	
Resistor terminals					
Terminal voltage range <u>9</u> /	V_A, V_B, V_W		V_{SS}	V _{DD}	V
Capacitance A, Capacitance B 6/	C _A , C _B	f = 1 MHz, measured to GND,	85 TY	'P <u>3</u> /	pF
Capacitance W <u>6</u> /	Cw	code = half scale	65 TYP <u>3</u> /		1
Common mode leakage current <u>6</u> /	I _{CM}	$V_A = V_B = V_W$	-120	+120	nA
Digital inputs					
Input logic high <u>6</u> /	V _{IH}	V_{LOGIC} = 2.7 V to 5.5 V	2.0		V
Input logic low <u>6</u> /	VIL	V _{LOGIC} = 2.7 V to 5.5 V		0.8	
Input current	IIL	V _{IN} = 0 V or V _{LOGIC}		±1	μA
Input capacitance <u>6</u> /	CIL		5 TY	P <u>3</u> /	pF

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12616	
COLUMBUS, OHIO	A	16236		
		REV	PAGE 5	

Test	Symbol Conditions		Lim	its	Unit
		<u>2</u> /	Min	Max	
Digital output (SDO and RDY)					
Output high voltage <u>6</u> /	V _{OH}	$R_{PULL_{UP}} = 2.2 \text{ k}\Omega \text{ to } V_{LOGIC}$	$V_{LOGIC} - 0.4$		V
Output low voltage <u>6</u> /	V _{OL}			GND + 0.4	
Three state leakage current			-1	+1	μA
Output capacitance <u>6</u> /	C _{OL}		5 TY	P <u>3</u> /	рF
Power supplies					
Single supply power range	V _{DD}	V _{SS} = 0 V	9	33	V
Dual supply power range	V _{DD} /V _{SS}		±9	±16.5	V
Positive supply current	I _{DD}	$V_{DD}/V_{SS} = \pm 16.5 V$		2	μA
Negative supply current	Iss	$V_{DD}/V_{SS} = \pm 16.5 V$	-2		μA
Logic supply range	VLOGIC		2.7	5.5	V
Logic supply current	I _{LOGIC}	V_{LOGIC} =5 V, V_{IH} = 5 V or V_{IL} = GND		10	μA
OTP store current 6/ 10/	ILOGC_PROG	$V_{IH} = 5 V \text{ or } V_{IL} = GND$	25 TY	Έ <u>3</u> /	mA
OTP read current <u>6/ 11</u> /	ILOGIC_FUSE_READ	V_{IH} = 5 V or V_{IL} = GND	25 TY	Έ <u>3</u> /	mA
Power dissipation <u>12</u> /	P _{DISS}	$V_{IH} = 5 V \text{ or } V_{IL} = GND$		110	μW
Power supply rejection ratio	PSSR	$\Delta V_{DD}/\Delta V_{SS}$ = ±15 V ±10%	0.103 T	'YP <u>3</u> /	%/%
Dynamic characteristics 8/	<u>13</u> /				
Bandwidth	BW	-3 dB	520 T`	YP <u>3</u> /	
Total harmonic distortion	THDw	V_A = 1Vrms, V_B = 0, f = 1 kHz	-93 TY	(P <u>3</u> /	
V _w setting time	ts	VA = 30 V, VB = 0 V, ±0.5 LSB error band, initial code = zero scale, board capacitance = 170 pF			
		Code = full scale, normal mode Code = full scale, R-perf mode Code = half scale, normal mode Code = half scale, R-Perf mode	ר 750 T 2.5 T 2.5 T 5 TY	'P <u>3</u> / 'P <u>3</u> /	ns µs µs µs
Resistor noise density	e _{N_WB}	Code = half scale	10 TY	Έ <u>3</u> /	nV/√Hz

TABLE I. Electrical performance characteristics - Continued. 1/

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12616	
COLUMBUS, OHIO	A	16236		
		REV	PAGE 6	

TABLE I. <u>Electrical performance characteristics</u> – Continued. <u>1</u>/

Test	Symbol	Conditions	Limits	<u>15</u> /	Unit
		<u>14</u> /	Min	Max	
Interface timing specifications					
SCLK cycle time	t ₁ <u>16</u> /		20		ns
SCLK high time	t2		10		
SCLK low time	t3		10		
SYNC to SCLK falling edge setup time	t4		10		
Data setup time	t5		5		
Data hold timw	t6		5		
SCLK falling edge to SYNC rising edge	t7		1		
Minimum SYNC high time	t8		400 <u>17</u> /		
SYNC rising edge to next SCLK fall ignore	t9		14		
RDY rising edge to SYNC falling edge	t ₁₀ <u>18</u> /		1		
SYNC rising edge to RDY fall time	t ₁₁ <u>18</u> /			40	
RDY low time, RDAC register write command execute time (R-Perf mode)	t ₁₂ <u>18</u> /			2.4	μs
RDY low time, RDAC register write command execute time (normal mode)				419	ns
RDY low time, memory program execute time				8	ms
Software/hardware reset			1.5		ms
RDY low time, RDAC register readback execute time	t ₁₃ <u>18</u> /			450	ns
RDY low time, memory readback execute time				1.3	ms
SCLK rising edge to SDO valid	t ₁₄ <u>18</u> /			450	ns
Minimum RESET pulse width (asynchronous)	t _{RESET}		20		ns
Power on OTP restore time	t _{POWER-UP} <u>19/</u>			2ms	

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12616
COLUMBUS, OHIO	A	16236	
		REV	PAGE 7

TABLE I. Electrical performance characteristics - Continued. 1/

- 1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
- $V_{DD} = 21 \text{ V to } 33 \text{ V}, V_{SS} = 0\text{ V}; V_{DD} = 10.5 \text{ V to } 16.5 \text{ V}, V_{SS} = -10.5 \text{ V to } -16.5 \text{ V}; V_{LOGIC} = 2.7 \text{ V to } 5.5 \text{ V}, V_A = V_{DD}, V_B = V_{SS}, V_{SS} = -10.5 \text{ V to } -16.5 \text{ V}; V_{LOGIC} = -10.5 \text{ V to } -10.5 \text{ V}; V_{LOGIC} = -10.5 \text{ V}; V_$ <u>2</u>/ $-55^{\circ}C < T_A < +125^{\circ}C$, unless otherwise noted.
- Typical values represent average readings at 25°C, V_{DD} = 15 V, _{VSS} = -15 V, and V_{LOGIC} = 5V. <u>3</u>/
- Resistor position nonlinearity error. R-INL is the deviation from an ideal value measured between R_{WB} at code 0x00B and code 4/ 0x3FF or between R_{WA} at code 0x3F3 and code 0x000. R-DNL measures the relative step change from ideal between successive tap positions. The specification is guaranteed in resistor performance mode, with a wiper current of 1 mA for VA < 12 V and 1.2 mA for VA \ge 12 V.
- Resistor performance mode. The terms resistor performance mode and R-Perf mode are used interchangeably. <u>5</u>/
- <u>6</u>/ <u>7</u>/ Guaranteed by design and characterization, not subject to production test.
- Resistor performance mode code range

Resistor	-55°C < T _A < +125°C							
Tolerance per	$ V_{DD} - V_{SS} =$	30 V to 33V	$ V_{DD} - V_{SS} =$	26 V to 30V	$ V_{DD} - V_{SS} = 22 \text{ V to } 26 \text{ V}$		$ V_{DD} - V_{SS} = 21 \text{ V to } 22 \text{ V}$	
Code	R _{WB}	R _{WA}	R _{WB}	R _{WA}	R _{WB}	R _{WA}	R _{WB}	R _{WA}
1% R-Tolerance	From 0x1EF to 0x3FF	From 0x000 to 0x210	From 0x1F4 to 0x3FF	From 0x000 to 0x20B	From 0x1F4 to 0x3FF	From 0x000 to 0x20B	N/A	N/A
2% R-Tolerance	From 0x0C3 to 0x3FF	From 0x000 to 0x33C	From 0x0E6 to 0x3FF	From 0x000 to 0x319	From 0x131 to 0x3FF	From 0x000 to 0x2CE	From 0x131 to 0x3FF	From 0x000 to 0x2CE
3% R-Tolerance	From 0x073 to 0x3FF	From 0x000 to 0x38C	From 0x087 to 0x3FF	From 0x000 to 0x378	From 0x0AF to 0x3FF	From 0x000 to 0x350	From 0x0AF to 0x3FF	From 0x000 to 0x350

INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. V_A = V_{DD} 8/ and $V_B = 0V$. DNL specification limits of ±1 LSB maximum guaranteed monotonic operating conditions.

9/ Resistor terminal A, Resistor terminal B, and Resistor terminal W, have no limitations on polarity with respect to each other. Dual supply operation enables ground referenced bipolar signal adjustment.

10/ Different from operating current; supply current for fuse program lasts approximately 550 µs.

11/ Different from operating current; supply current for fuse read lasts approximately 550 µs.

<u>12</u>/ P_{DISS} is calculated from ($I_{DD} \times V_{DD}$) + ($I_{LOGIC} \times V_{LOGIC}$).

13/ All dynamic characteristics use $V_{DD} = 15 \text{ V}$, $V_{SS} = -15 \text{ V}$, and $V_{LOGIC} = 5 \text{ V}$.

<u>14</u>/ $V_{DD}/V_{SS} = \pm 15$ V, VLOGIC = 2.7 V to 5.5 V, -55°C < T_A < +125°C. All specifications T_{MIN} to T_{MAX}, unless otherwise noted.

 $\frac{15}{15}$ All input signal are specified with t_R = t_F = 1ns/V (10% to 90% of V_{DD}) and timed from a voltage level of (V_{IL} +V_{IH})/2.

16/ Maximum SCLK frequency is 50 MHz.

- 17/ Refer to t12 and t13 for RDAC register and memory commands operations.
- <u>18</u>/ $R_{PULL-UP} = 2.2 \text{ k}\Omega$ to V_{LOGIC} , with a capacitance load of 186 pF.
- 19/ Maximum time after VLOGIC is equal to 2.5 V.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12616
		REV	PAGE 8

Dimensions							
Symbol	Millimeters		Millimeters		Symbol	Milli	meters
	Min	Max		Min	Max		
А		1.20	E	4.30	4.50		
A1	0.05	0.15	E1	6.40 BSC			
b	0.19	0.30	е	0.65 BSC			
С	0.09	0.20	L	0.45	0.75		
D	4.90	5.10					

NOTES:

All linear dimensions are in millimeters.
 Falls within JEDEC MO-153-AB-1.

FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12616
		REV	PAGE 9

Case outline X					
Terminal number	Terminal symbol	Terminal number	Terminal symbol		
1	RESET	8	V _{LOGIC}		
2	V _{SS}	9	GND		
3	А	10	DIN		
4	W	11	SCLK		
5	В	12	SYNC		
6	V _{DD}	13	SDO		
7	EXT_CAP	14	RDY		

FIGURE 2. Terminal connections.

		Case outline X
Те	rminal	Description
Number	Mnemonic	
1	RESET	Hardware reset pin. Refreshes the RDAC register with the contents of the 20-TP memory register. Factory default loads midscale until the first 20-TP wiper memory location programmed. RESET is activated at the logic high transition. Tie RESET to V_{LOGIC} if not used.
2	V _{SS}	Negative supply. Connect to 0 V for single supply applications. This pin should be decoupled with 0.1 μ F ceramic capacitors and 10 μ F capacitors.
3	А	Terminal A of RDAC. $V_{SS} \le V_A \le V_{DD}$.
4	W	Wiper terminal of RDAC. $V_{SS} \le V_W \le V_{DD}$.
5	В	Terminal B of RDAC. $V_{SS} \le V_B \le V_{DD}$.
6	V _{DD}	Positive power supply. This pin should be decoupled with 0.1 µF ceramic capacitors and 10 µF capacitors.
7	EXT_CAP	External Capacitor. Connect a 1 µF capacitor to EXT_CAP. This capacitor must have a voltage rating of ≥ 7 V.
8	V _{LOGIC}	Logic power supply; 2.7 V to 5.5 V. This pin should be decoupled with 0.1 μ F ceramic capacitors and 10 μ F capacitors.
9	GND	Ground pin, Logic ground reference.
10	DIN	Serial data input. The AD5292-EP has a 16 bit shift register. Data is clocked into register on the falling edge of the serial clock input.
11	SCLK	Serial clock input. data is clocked into the shift register on the falling edge of the serial clock input. Data can be transferred at rates up to 50 MHz.
12	<u>SYNC</u>	Falling edge synchronization signal. This is the fram synchronization signal for the input data. When $\overline{\text{SYNC}}$ goes low, it enables the shift register and data is transferred in on the falling edges of the following clocks. The selected register is updated on the rising edge of $\overline{\text{SYNC}}$ following the 16 th clock cycle. If $\overline{\text{SYNC}}$ is taken high before 16 th clock cycle, the rising edge of $\overline{\text{SYNC}}$ acts as an interrupt, and the write sequence is ignored by the DAC.
13	SDO	Serial data output. This open drain output requires an external pull up resistor. SDO can be used to clock data from the shift register in daisy chain mode or in readback mode.
14	RDY	Ready Pin. This active high open drain output identifies the completion of a write or read operation to or from the RDAC register or memory.

FIGURE 3. Terminal function.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12616
COLUMBUS, OHIO	A	16236	
		REV	PAGE 10

FIGURE 4. Functional block diagram.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12616
		REV	PAGE 11

FIGURE 7. Read timing diagram, CPOL = 0, CPHA = 1.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12616
COLUMBUS, OHIO	A	16236	
		REV	PAGE 12

FIGURE 8. Resistor position nonlinearity error (Rheostat operation; R-INL, R-DNL).

FIGURE 9. Potentiometer divider Nonlinearity error (INL, DNL).

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12616
COLUMBUS, OHIO	A	16236	
		REV	PAGE 13

V+ = V_{DD} ±10% PSRR (dB) = 20 log $\frac{\Delta V_{MS}}{\Delta V_{DD}}$ PSS(%%) = $\frac{\Delta V_{MS}}{\Delta V_{DD}}^{\%}$

FIGURE 11. Power supply sensitive (PSS, PSRR).

FIGURE 13. Common mode leakage current

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12616
		REV	PAGE 14

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Vendor part number
V62/12616-01XB	24355	AD5292SRU-20-EP

<u>1</u>/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

Source of supply

24355

Analog Devices 1 Technology Way P.O. Box 9106 Norwood, MA 02062-9106

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12616
		REV	PAGE 15